Embedding Ultrafine and High‐Content Pt Nanoparticles at Ceria Surface for Enhanced Thermal Stability

نویسندگان

  • Jingshan S Du
  • Ting Bian
  • Junjie Yu
  • Yingying Jiang
  • Xiaowei Wang
  • Yucong Yan
  • Yi Jiang
  • Chuanhong Jin
  • Hui Zhang
  • Deren Yang
چکیده

Ultrafine Pt nanoparticles loaded on ceria (CeO2) are promising nanostructured catalysts for many important reactions. However, such catalysts often suffer from thermal instability due to coarsening of Pt nanoparticles at elevated temperatures, especially for those with high Pt loading, which leads to severe deterioration of catalytic performances. Here, a facile strategy is developed to improve the thermal stability of ultrafine (1-2 nm)-Pt/CeO2 catalysts with high Pt content (≈14 wt%) by partially embedding Pt nanoparticles at the surface of CeO2 through the redox reaction at the solid-solution interface. Ex situ heating studies demonstrate the significant increase in thermal stability of such embedded nanostructures compared to the conventional loaded catalysts. The microscopic pathways for interparticle coarsening of Pt embedded or loaded on CeO2 are further investigated by in situ electron microscopy at elevated temperatures. Their morphology and size evolution with heating temperature indicate that migration and coalescence of Pt nanoparticles are remarkably suppressed in the embedded structure up to about 450 °C, which may account for the improved thermal stability compared to the conventional loaded structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activity and stability of low-content gold–cerium oxide catalysts for the water–gas shift reaction

We report here on the high activity and stability of low-content gold–cerium oxide catalysts for the water–gas shift reaction (WGS). These catalysts are reversible in cyclic reduction–oxidation treatment up to 400 8C, are non-pyrophoric, and are thus potential candidates for application to hydrogen generation for fuel cell power production. Low-content (0.2–0.9 at.%) gold–ceria samples were pre...

متن کامل

Ultrafine Pt nanoparticle-decorated robust 3D N-doped porous graphene as an enhanced electrocatalyst for methanol oxidation.

Ultrafine Pt nanoparticles supported on a robust 3D N-doped porous graphene (PtNP/R-3DNG) composite are fabricated. The composite exhibits a considerable enhancement of activity and stability toward the methanol electrooxidation reaction. The robust 3D porous structure and abundant nitrogen atoms are believed to be responsible for the enhanced performance.

متن کامل

Improved Thermal Stability of NiSi Nanolayer in Ni-Si Co-sputtered Structure

Electrical, structural and morphological properties of Ni silicide films formed in Ni(Pt 4at.% )/Si(100) and Ni0.6Si0.4(Pt4at.% )/Si(100) structures at various annealing temperatures ranging from 200 to 1000 oC were studied. The Ni(Pt) and Ni0.6Si0.4(Pt) films with thickness of 15 and 25 nm were deposited by RF magnetron co-sputtering method, respectively.  The annealing process of the structur...

متن کامل

Design of Highly Uniform Platinum and Palladium Nanoparticle Decoration on TiO2 Nanotube Arrays: An Efficient Anode to the Electro-Oxidation of Alcohols

We explore electro-catalytic properties of a system consisting of platinum and palladium nanoparticles dispersed over a nanotubular self-organized TiO2 matrix. These electrodes prepared by electroess and microemulsion of palladium and palladium nanoparticles on to TiO2 nanotubes, respectively. Titanium oxide nanotubes were fabricated by anodizing titanium foil in ethylene glycol (EG) fluoride-c...

متن کامل

Low-temperature solution processible, solventless and transparent silica nanopar- ticle-dispersed epoxy hybrid materials

Low-temperature solution processible and solventless silica-epoxy hybrid materials composed of organically modified silica nanoparticles and epoxy monomers were successfully fabricated through simple sol-gel process and solvent evaporation. These silica-epoxy hybrid materials exhibited the homogeneous dispersion without any phase separation, aggregation, and gelation in the solventless environm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017